Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Viruses ; 14(2)2022 01 30.
Article in English | MEDLINE | ID: covidwho-1706244

ABSTRACT

Omicron, the novel highly mutated SARS-CoV-2 Variant of Concern (VOC, Pango lineage B.1.1.529) was first collected in early November 2021 in South Africa. By the end of November 2021, it had spread and approached fixation in South Africa, and had been detected on all continents. We analyzed the exponential growth of Omicron over four-week periods in the two most populated of South Africa's provinces, Gauteng and KwaZulu-Natal, arriving at the doubling time estimates of, respectively, 3.3 days (95% CI: 3.2-3.4 days) and 2.7 days (95% CI: 2.3-3.3 days). Similar or even shorter doubling times were observed in other locations: Australia (3.0 days), New York State (2.5 days), UK (2.4 days), and Denmark (2.0 days). Log-linear regression suggests that the spread began in Gauteng around 11 October 2021; however, due to presumable stochasticity in the initial spread, this estimate can be inaccurate. Phylogenetics-based analysis indicates that the Omicron strain started to diverge between 6 October and 29 October 2021. We estimated that the weekly growth of the ratio of Omicron to Delta is in the range of 7.2-10.2, considerably higher than the growth of the ratio of Delta to Alpha (estimated to be in in the range of 2.5-4.2), and Alpha to pre-existing strains (estimated to be in the range of 1.8-2.7). High relative growth does not necessarily imply higher Omicron infectivity. A two-strain SEIR model suggests that the growth advantage of Omicron may stem from immune evasion, which permits this VOC to infect both recovered and fully vaccinated individuals. As we demonstrated within the model, immune evasion is more concerning than increased transmissibility, because it can facilitate larger epidemic outbreaks.


Subject(s)
COVID-19/transmission , Immune Evasion , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Virus Replication/immunology , Australia/epidemiology , COVID-19/epidemiology , Genome, Viral , Humans , New York/epidemiology , Phylogeny , SARS-CoV-2/genetics , Sequence Analysis, DNA/statistics & numerical data , South Africa/epidemiology , Time Factors
2.
Comput Math Methods Med ; 2021: 1835056, 2021.
Article in English | MEDLINE | ID: covidwho-1315820

ABSTRACT

In a general computational context for biomedical data analysis, DNA sequence classification is a crucial challenge. Several machine learning techniques have used to complete this task in recent years successfully. Identification and classification of viruses are essential to avoid an outbreak like COVID-19. Regardless, the feature selection process remains the most challenging aspect of the issue. The most commonly used representations worsen the case of high dimensionality, and sequences lack explicit features. It also helps in detecting the effect of viruses and drug design. In recent days, deep learning (DL) models can automatically extract the features from the input. In this work, we employed CNN, CNN-LSTM, and CNN-Bidirectional LSTM architectures using Label and K-mer encoding for DNA sequence classification. The models are evaluated on different classification metrics. From the experimental results, the CNN and CNN-Bidirectional LSTM with K-mer encoding offers high accuracy with 93.16% and 93.13%, respectively, on testing data.


Subject(s)
COVID-19/virology , High-Throughput Nucleotide Sequencing/statistics & numerical data , Neural Networks, Computer , SARS-CoV-2/genetics , Sequence Analysis, DNA/statistics & numerical data , Base Sequence , Computational Biology , DNA, Viral/classification , DNA, Viral/genetics , Databases, Nucleic Acid/statistics & numerical data , Deep Learning , Humans , Pandemics , SARS-CoV-2/classification
SELECTION OF CITATIONS
SEARCH DETAIL